{ "id": "1505.00653", "version": "v1", "published": "2015-05-04T14:28:13.000Z", "updated": "2015-05-04T14:28:13.000Z", "title": "Minimal inversion complete sets and maximal abelian ideals", "authors": [ "Dmitri I. Panyushev" ], "comment": "17 pages", "categories": [ "math.RT", "math.CO" ], "abstract": "Let $\\mathfrak g$ be a simple Lie algebra, $\\mathfrak b$ a fixed Borel subalgebra, and $W$ the Weyl group of $\\mathfrak g$. In this note, we study a relationship between the maximal abelian ideals of $\\mathfrak b$ and the minimal inversion complete sets of $W$. The latter have been recently defined by Malvenuto et al. (J. Algebra, 424 (2015), 330-356.)", "revisions": [ { "version": "v1", "updated": "2015-05-04T14:28:13.000Z" } ], "analyses": { "subjects": [ "17B20", "17B22", "20F55" ], "keywords": [ "minimal inversion complete sets", "maximal abelian ideals", "simple lie algebra", "weyl group", "fixed borel subalgebra" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable" } } }