{ "id": "1504.07859", "version": "v1", "published": "2015-04-29T13:52:31.000Z", "updated": "2015-04-29T13:52:31.000Z", "title": "Geometric approach to parabolic induction", "authors": [ "David Kazhdan", "Yakov Varshavsky" ], "comment": "26 pages", "categories": [ "math.RT", "math.AG" ], "abstract": "In this note we construct a \"restriction\" map from the cocenter of a reductive group G over a local non-archimedean field F to the cocenter of a Levi subgroup. We show that the dual map corresponds to the parabolic induction and deduce that a parabolic induction preserves stability. We also give a new (purely geometric) proof that a character of the normalized parabolic induction does not depend on a parabolic subgroup. In the appendix, we use similar argument to extend a theorem of Lusztig-Spaltenstein on induced unipotent classes to all infinite fields.", "revisions": [ { "version": "v1", "updated": "2015-04-29T13:52:31.000Z" } ], "analyses": { "keywords": [ "geometric approach", "parabolic induction preserves stability", "dual map corresponds", "local non-archimedean field", "infinite fields" ], "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150407859K" } } }