{ "id": "1504.07837", "version": "v1", "published": "2015-04-29T12:48:14.000Z", "updated": "2015-04-29T12:48:14.000Z", "title": "Equidistribution of values of linear forms on a cubic hypersurface", "authors": [ "Sam Chow" ], "categories": [ "math.NT" ], "abstract": "Let $C$ be a cubic form with rational coefficients in $n$ variables, and let $h$ be the $h$-invariant of $C$. Let $L_1, \\ldots, L_r$ be linear forms with real coefficients such that if $\\boldsymbol{\\alpha} \\in \\mathbb{R}^r \\setminus \\{ \\boldsymbol{0} \\}$ then $\\boldsymbol{\\alpha} \\cdot \\mathbf{L}$ is not a rational form. Assume that $h > 16 + 8 r$. Let $\\boldsymbol{\\tau} \\in \\mathbb{R}^r$, and let $\\eta$ be a positive real number. We prove an asymptotic formula for the weighted number of integer solutions $\\mathbf{x} \\in [-P,P]^n$ to the system $C(\\mathbf{x}) = 0, \\: |\\mathbf{L}(\\mathbf{x}) - \\boldsymbol{\\tau}| < \\eta$. If the coefficients of the linear forms are algebraically independent over the rationals, then we may replace the $h$-invariant condition with the hypothesis $n > 16 + 9 r$, and show that the system has an integer solution. Finally, we show that the values of $\\mathbf{L}$ at integer zeros of $C$ are equidistributed modulo one in $\\mathbb{R}^r$, requiring only that $h > 16$.", "revisions": [ { "version": "v1", "updated": "2015-04-29T12:48:14.000Z" } ], "analyses": { "subjects": [ "11D25", "11D75", "11J13", "11J71", "11P55" ], "keywords": [ "linear forms", "cubic hypersurface", "equidistribution", "integer solution", "integer zeros" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150407837C" } } }