{ "id": "1504.07696", "version": "v1", "published": "2015-04-29T01:45:12.000Z", "updated": "2015-04-29T01:45:12.000Z", "title": "On a family of polynomials related to $ζ(2,1)=ζ(3)$", "authors": [ "Wadim Zudilin" ], "comment": "8 pages", "categories": [ "math.NT", "math-ph", "math.CA", "math.CO", "math.MP" ], "abstract": "We give a new proof of the identity $\\zeta(\\{2,1\\}^l)=\\zeta(\\{3\\}^l)$ of the multiple zeta values, where $l=1,2,\\dots$, using generating functions of the underlying generalized polylogarithms. In the course of study we arrive at (hypergeometric) polynomials satisfying 3-term recurrence relations, whose properties we examine and compare with analogous ones of polynomials originated from an (ex-)conjectural identity of Borwein, Bradley and Broadhurst.", "revisions": [ { "version": "v1", "updated": "2015-04-29T01:45:12.000Z" } ], "analyses": { "subjects": [ "11M06", "11M41", "11G55", "33C20" ], "keywords": [ "polynomials", "multiple zeta values", "recurrence relations", "conjectural identity", "generating functions" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150407696Z" } } }