{ "id": "1504.07138", "version": "v1", "published": "2015-04-27T15:48:16.000Z", "updated": "2015-04-27T15:48:16.000Z", "title": "On the dimension of self-affine sets and measures with overlaps", "authors": [ "Balázs Bárány", "Michał\\ Rams", "Károly Simon" ], "categories": [ "math.DS" ], "abstract": "In this paper we consider diagonally affine, planar IFS $\\Phi=\\left\\{S_i(x,y)=(\\alpha_ix+t_{i,1},\\beta_iy+t_{i,2})\\right\\}_{i=1}^m$. Combining the techniques of Hochman and Feng, Hu we compute the Hausdorff dimension of the self-affine attractor and measures and we give an upper bound for the dimension of the exceptional set of parameters.", "revisions": [ { "version": "v1", "updated": "2015-04-27T15:48:16.000Z" } ], "analyses": { "subjects": [ "28A80", "28A78" ], "keywords": [ "self-affine sets", "planar ifs", "hausdorff dimension", "self-affine attractor", "upper bound" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150407138B" } } }