{ "id": "1504.07061", "version": "v1", "published": "2015-04-27T12:43:21.000Z", "updated": "2015-04-27T12:43:21.000Z", "title": "On Parisian ruin over a finite-time horizon", "authors": [ "Krzysztof Debicki", "Enkelejd Hashorva", "Lanpeng Ji" ], "comment": "20", "categories": [ "math.PR" ], "abstract": "For a risk process $R_u(t)=u+ct-X(t), t\\ge 0$, where $u\\ge 0$ is the initial capital, $c>0$ is the premium rate and $X(t),t\\ge 0$ is an aggregate claim process, we investigate the probability of the Parisian ruin \\[ \\mathcal{P}_S(u,T_u)=\\mathbb{P}\\{\\inf_{t\\in[0,S]} \\sup_{s\\in[t,t+T_u]} R_u(s)<0\\}, \\] with a given positive constant $S$ and a positive measurable function $T_u$. We derive asymptotic expansion of $\\mathcal{P}_S(u,T_u)$, as $u\\to\\infty$, for the aggregate claim process $X$ modeled by Gaussian processes. As a by-product, we derive the exact tail asymptotics of the infimum of a standard Brownian motion with drift over a finite-time interval.", "revisions": [ { "version": "v1", "updated": "2015-04-27T12:43:21.000Z" } ], "analyses": { "subjects": [ "60G15", "60G70" ], "keywords": [ "parisian ruin", "finite-time horizon", "aggregate claim process", "exact tail asymptotics", "standard brownian motion" ], "publication": { "doi": "10.1007/s11425-015-5073-6", "journal": "Science in China A: Mathematics", "year": 2016, "month": "Mar", "volume": 59, "number": 3, "pages": 557 }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016ScChA..59..557D" } } }