{ "id": "1504.06467", "version": "v1", "published": "2015-04-24T11:00:14.000Z", "updated": "2015-04-24T11:00:14.000Z", "title": "A Luna étale slice theorem for algebraic stacks", "authors": [ "Jarod Alper", "Jack Hall", "David Rydh" ], "comment": "31 pages", "categories": [ "math.AG" ], "abstract": "We prove that every algebraic stack, locally of finite type over an algebraically closed field with affine stabilizers, is \\'etale-locally a quotient stack in a neighborhood of a point with a linearly reductive stabilizer group. The proof uses an equivariant version of Artin's algebraization theorem proved in the appendix. We provide numerous applications of the main theorems.", "revisions": [ { "version": "v1", "updated": "2015-04-24T11:00:14.000Z" } ], "analyses": { "subjects": [ "14D23", "14B12", "14L24", "14L30" ], "keywords": [ "algebraic stack", "slice theorem", "artins algebraization theorem", "finite type", "main theorems" ], "note": { "typesetting": "TeX", "pages": 31, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150406467A" } } }