{ "id": "1504.06095", "version": "v1", "published": "2015-04-23T09:15:11.000Z", "updated": "2015-04-23T09:15:11.000Z", "title": "On the Laplacian of strong power graphs of finite groups", "authors": [ "A. K. Bhuniya", "S. Bera" ], "comment": "9 pages", "categories": [ "math.CO" ], "abstract": "Let $ G $ be a finite group of order $ n$. The strong power graph $\\mathcal{P}_s(G) $ of $G$ is the undirected graph whose vertices are the elements of $G$ such that two distinct vertices $a$ and $b$ are adjacent if $a^{{m}_1}$=$b^{{m}_2}$ for some positive integers ${m}_1 ,{m}_2 < n.$ In this article we give a complete characterization of Laplacian spectrum, and find the permanent of the Laplacian matrix of the strong power graph $\\mathcal{P}_s(G)$ for any finite group $G$.", "revisions": [ { "version": "v1", "updated": "2015-04-23T09:15:11.000Z" } ], "analyses": { "subjects": [ "05C50", "05C25" ], "keywords": [ "strong power graph", "finite group", "distinct vertices", "complete characterization", "laplacian spectrum" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }