{ "id": "1504.05873", "version": "v1", "published": "2015-04-22T16:42:34.000Z", "updated": "2015-04-22T16:42:34.000Z", "title": "An Upper bound on the growth of Dirichlet tilings of hyperbolic spaces", "authors": [ "Itai Benjamini", "Tsachik Gelander" ], "categories": [ "math.GR", "math.MG" ], "abstract": "It is shown that the growth rate $(\\lim_r |B(r)|^{1/r})$ of any $k$ faces Dirichlet tiling of the real hyperbolic space $\\mathbb{H}^d, d>2,$ is at most $k-1-\\epsilon$, for an $\\epsilon > 0$, depending only on $k$ and $d$. We don't know if there is a universal $\\epsilon_u > 0$, such that $k-1-\\epsilon_u$ upperbounds the growth rate for any $k$-regular tiling, when $ d > 2$?", "revisions": [ { "version": "v1", "updated": "2015-04-22T16:42:34.000Z" } ], "analyses": { "keywords": [ "upper bound", "growth rate", "real hyperbolic space", "faces dirichlet tiling", "upperbounds" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150405873B" } } }