{ "id": "1504.05012", "version": "v1", "published": "2015-04-20T11:07:52.000Z", "updated": "2015-04-20T11:07:52.000Z", "title": "Polynomials vanishing on Cartesian products: The Elekes-Szabó Theorem revisited", "authors": [ "Orit E. Raz", "Micha Sharir", "Frank de Zeeuw" ], "categories": [ "math.CO" ], "abstract": "Let $F\\in\\mathbb{C}[x,y,z]$ be a constant-degree polynomial,and let $A,B,C\\subset\\mathbb C$ be finite sets of size $n$. We show that $F$ vanishes on at most $O(n^{11/6})$ points of the Cartesian product $A\\times B\\times C$, unless $F$ has a special group-related form. This improves a theorem of Elekes and Szab\\'o [Combinatorica, 2012], and generalizes a result of Raz, Sharir, and Solymosi [Amer. J. Math., to appear]. The same statement holds over $\\mathbb{R}$, and a similar statement holds when $A, B, C$ have different sizes (with a more involved bound replacing $O(n^{11/6})$). This result provides a unified tool for improving bounds in various Erd\\H os-type problems in combinatorial geometry, and we discuss several applications of this kind.", "revisions": [ { "version": "v1", "updated": "2015-04-20T11:07:52.000Z" } ], "analyses": { "subjects": [ "52C10" ], "keywords": [ "cartesian product", "polynomials vanishing", "similar statement holds", "finite sets" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150405012R" } } }