{ "id": "1504.04904", "version": "v1", "published": "2015-04-20T00:50:05.000Z", "updated": "2015-04-20T00:50:05.000Z", "title": "Difference Sets and Sums of Polynomials", "authors": [ "Neil Lyall", "Alex Rice" ], "comment": "31 pages", "categories": [ "math.NT", "math.CA", "math.CO" ], "abstract": "We provide upper bounds on the largest subsets of $\\{1,2,\\dots,N\\}$ with no differences of the form $h_1(n_1)+\\cdots+h_{\\ell}(n_{\\ell})$ with $n_i\\in \\mathbb{N}$ or $h_1(p_1)+\\cdots+h_{\\ell}(p_{\\ell})$ with $p_i$ prime, where $h_i\\in \\mathbb{Z}[x]$ lie in the largest possible classes of polynomials. For example, we show that a subset of $\\{1,2,\\dots,N\\}$ free of nonzero differences of the form $n^j+m^k$ for fixed $j,k\\in \\mathbb{N}$ has density at most $e^{-c(\\log N)^{1/4}}$ for some $c=c(j,k)>0$. Our results, obtained by adapting two Fourier analytic, circle method-driven strategies, either recover or improve upon all previous results for a single polynomial.", "revisions": [ { "version": "v1", "updated": "2015-04-20T00:50:05.000Z" } ], "analyses": { "keywords": [ "difference sets", "circle method-driven strategies", "single polynomial", "largest subsets", "nonzero differences" ], "note": { "typesetting": "TeX", "pages": 31, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150404904L" } } }