{ "id": "1504.04762", "version": "v1", "published": "2015-04-18T21:09:55.000Z", "updated": "2015-04-18T21:09:55.000Z", "title": "Regularity for Subelliptic PDE Through Uniform Estimates in Multi-Scale Geometries", "authors": [ "Luca Capogna", "Giovanna Citti" ], "categories": [ "math.AP" ], "abstract": "We aim at reviewing and extending a number of recent results addressing stability of certain geometric and analytic estimates in the Riemannian approximation of subRiemannian structures. In particular we extend the recent work of the the authors with Rea [19] and Manfredini [17] concerning stability of doubling properties, Poincar\\'e inequalities, Gaussian estimates on heat kernels and Schauder estimates from the Carnot group setting to the general case of H\\\"ormander vector fields.", "revisions": [ { "version": "v1", "updated": "2015-04-18T21:09:55.000Z" } ], "analyses": { "keywords": [ "uniform estimates", "multi-scale geometries", "subelliptic pde", "regularity", "vector fields" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150404762C" } } }