{ "id": "1504.04657", "version": "v1", "published": "2015-04-17T23:04:35.000Z", "updated": "2015-04-17T23:04:35.000Z", "title": "Kraśkiewicz-Pragacz modules and Ringel duality", "authors": [ "Masaki Watanabe" ], "categories": [ "math.RT", "math.CO" ], "abstract": "Kra\\'skiewicz and Pragacz introduced representations of the upper-triangular Lie algebras whose characters are Schubert polynomials. In previous works the author studied the structure of Kra\\'skiewicz-Pragacz modules using the theory of highest weight categories. From the results there, in particular we obtain a certain highest weight category whose standard modules are KP modules. In this paper we show that this highest weight category is self Ringel-dual, and shows that the tensor product operation on $\\mathfrak{b}$-modules is compatible with Ringel duality functor.", "revisions": [ { "version": "v1", "updated": "2015-04-17T23:04:35.000Z" } ], "analyses": { "keywords": [ "highest weight category", "kraśkiewicz-pragacz modules", "upper-triangular lie algebras", "tensor product operation", "ringel duality functor" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150404657W" } } }