{ "id": "1504.03924", "version": "v1", "published": "2015-04-15T14:27:35.000Z", "updated": "2015-04-15T14:27:35.000Z", "title": "Koszul gradings on Brauer algebras", "authors": [ "Michael Ehrig", "Catharina Stroppel" ], "comment": "28 pages", "categories": [ "math.RT", "math.RA" ], "abstract": "We show that the Brauer algebra over the complex numbers for an integral parameter delta can be equipped with a grading, in the case of delta being non-zero turning it into a graded quasi-hereditary algebra. In which case it is Morita equivalent to a Koszul algebra. This is done by realizing the Brauer algebra as an idempotent truncation of a certain level two VW-algebra for some large positive integral parameter N. The parameter delta appears then in the choice of a cyclotomic quotient. This cyclotomic VW-algebra arises naturally as an endomorphism algebra of a certain projective module in parabolic category O for an even special orthogonal Lie algebra. In particular, the graded decomposition numbers are given by the associated parabolic Kazhdan-Lusztig polynomials.", "revisions": [ { "version": "v1", "updated": "2015-04-15T14:27:35.000Z" } ], "analyses": { "subjects": [ "16W20", "16W50", "17B20", "17B45" ], "keywords": [ "brauer algebra", "koszul gradings", "special orthogonal lie algebra", "integral parameter delta", "associated parabolic kazhdan-lusztig polynomials" ], "note": { "typesetting": "TeX", "pages": 28, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150403924E" } } }