{ "id": "1504.03349", "version": "v1", "published": "2015-04-13T20:14:08.000Z", "updated": "2015-04-13T20:14:08.000Z", "title": "Witnessing the Emergence of a Carbon Star", "authors": [ "L. Guzman-Ramirez", "E. Lagadec", "R. Wesson", "A. A. Zijlstra", "A. Muller", "D. Jones", "H. M. J. Boffin", "G. C. Sloan", "M. P. Redman", "A. Smette", "A. I. Karakas", "Lars-Ake Nyman" ], "comment": "5 pages, 5 figures, accepted for publication in the Monthly Notices of the Royal Astronomical Society Letters", "categories": [ "astro-ph.SR" ], "abstract": "During the late stages of their evolution, Sun-like stars bring the products of nuclear burning to the surface. Most of the carbon in the Universe is believed to originate from stars with masses up to a few solar masses. Although there is a chemical dichotomy between oxygen-rich and carbon-rich evolved stars, the dredge-up itself has never been directly observed. In the last three decades, however, a few stars have been shown to display both carbon- and oxygen-rich material in their circumstellar envelopes. Two models have been proposed to explain this dual chemistry: one postulates that a recent dredge-up of carbon produced by nucleosynthesis inside the star during the Asymptotic Giant Branch changed the surface chemistry of the star. The other model postulates that oxygen-rich material exists in stable keplerian rotation around the central star. The two models make contradictory, testable, predictions on the location of the oxygen-rich material, either located further from the star than the carbon-rich gas, or very close to the star in a stable disk. Using the Faint Object InfraRed CAmera (FORCAST) instrument on board the Stratospheric Observatory for Infrared Astronomy (SOFIA) Telescope, we obtained images of the carbon-rich planetary nebula (PN) BD+30 3639 which trace both carbon-rich polycyclic aromatic hydrocarbons (PAHs) and oxygen-rich silicate dust. With the superior spectral coverage of SOFIA, and using a 3D photoionisation and dust radiative transfer model we prove that the O-rich material is distributed in a shell in the outer parts of the nebula, while the C-rich material is located in the inner parts of the nebula. These observations combined with the model, suggest a recent change in stellar surface composition for the double chemistry in this object. This is evidence for dredge-up occurring ~1000yr ago.", "revisions": [ { "version": "v1", "updated": "2015-04-13T20:14:08.000Z" } ], "analyses": { "keywords": [ "carbon star", "oxygen-rich material", "carbon-rich polycyclic aromatic hydrocarbons", "superior spectral coverage", "faint object infrared camera" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable" } } }