{ "id": "1504.02805", "version": "v1", "published": "2015-04-10T22:22:30.000Z", "updated": "2015-04-10T22:22:30.000Z", "title": "DNR and incomparable Turing degrees", "authors": [ "Mingzhong Cai", "Noam Greenberg", "Michael McInerney" ], "categories": [ "math.LO" ], "abstract": "We construct an increasing $\\omega$-sequence $(a_n)$ of Turing degrees which forms an initial segment of the Turing degrees, and such that each~$a_{n+1}$ is diagonally noncomputable relative to $a_n$. It follows that the~$\\mathsf{DNR}$ principle of reverse mathematics does not imply the existence of Turing incomparable degrees.", "revisions": [ { "version": "v1", "updated": "2015-04-10T22:22:30.000Z" } ], "analyses": { "subjects": [ "03D28" ], "keywords": [ "incomparable turing degrees", "initial segment", "reverse mathematics", "turing incomparable degrees" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150402805C" } } }