{ "id": "1504.02628", "version": "v1", "published": "2015-04-10T10:06:41.000Z", "updated": "2015-04-10T10:06:41.000Z", "title": "B-spline-like bases for $C^3$ quintics on the Powell-Sabin 12-split", "authors": [ "Tom Lyche", "Georg Muntingh" ], "comment": "26 pages", "categories": [ "math.NA", "math.CO" ], "abstract": "For the space of $C^3$ quintics on the Powell-Sabin 12-split of a triangle, we determine explicitly the six symmetric simplex spline bases that reduce to a B-spline basis on each edge, have a positive partition of unity, a Marsden identity, and domain points with an intuitive control net. For one of these bases we derive $C^0$, $C^1$, $C^2$ and $C^3$ conditions on the control points of two splines on adjacent macrotriangles.", "revisions": [ { "version": "v1", "updated": "2015-04-10T10:06:41.000Z" } ], "analyses": { "subjects": [ "41A15", "65D07", "65D17" ], "keywords": [ "b-spline-like bases", "powell-sabin", "symmetric simplex spline bases", "b-spline basis", "marsden identity" ], "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150402628L" } } }