{ "id": "1504.02585", "version": "v1", "published": "2015-04-10T08:35:03.000Z", "updated": "2015-04-10T08:35:03.000Z", "title": "Approximation by Hölder functions in Besov and Triebel-Lizorkin spaces", "authors": [ "Toni Heikkinen", "Heli Tuominen" ], "categories": [ "math.FA" ], "abstract": "In this paper, we show that Besov and Triebel-Lizorkin functions can be approximated by a H\\\"older continuous function both in the Lusin sense and in norm. The results are proven in metric measure spaces for Haj{\\l}asz-Besov and Haj{\\l}asz-Triebel-Lizorkin functions defined by a pointwise inequality. We also prove new inequalities for medians, including a Poincar\\'e type inequality, which we use in the proof of the main result.", "revisions": [ { "version": "v1", "updated": "2015-04-10T08:35:03.000Z" } ], "analyses": { "subjects": [ "46E35", "43A85" ], "keywords": [ "triebel-lizorkin spaces", "hölder functions", "approximation", "poincare type inequality", "metric measure spaces" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150402585H" } } }