{ "id": "1504.02544", "version": "v1", "published": "2015-04-10T03:38:12.000Z", "updated": "2015-04-10T03:38:12.000Z", "title": "Log-optimal configurations on the sphere", "authors": [ "P. D. Dragnev" ], "comment": "15 pages", "categories": [ "math-ph", "math.MP" ], "abstract": "In this article we consider the distribution of $N$ points on the unit sphere $\\mathbb{S}^{d-1}$ in $\\mathbb{R}^d$ interacting via logarithmic potential. A characterization theorem of the stationary configurations is derived when $N=d+2$ and two new log-optimal configurations minimizing the logarithmic energy are obtained for six points on $\\mathbb{S}^3$ and seven points on $\\mathbb{S}^4$. A conjecture on the log-optimal configurations of $d+2$ points on $\\mathbb{S}^{d-1}$ is stated and three auxiliary results supporting the conjecture are presented.", "revisions": [ { "version": "v1", "updated": "2015-04-10T03:38:12.000Z" } ], "analyses": { "subjects": [ "74G05", "74G65", "31B15", "31C15" ], "keywords": [ "conjecture", "characterization theorem", "seven points", "unit sphere", "logarithmic potential" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150402544D" } } }