{ "id": "1504.02410", "version": "v1", "published": "2015-04-09T18:19:01.000Z", "updated": "2015-04-09T18:19:01.000Z", "title": "Sets of recurrence as bases for the positive integers", "authors": [ "Jakub Konieczny" ], "comment": "33 pages", "categories": [ "math.NT", "math.CO" ], "abstract": "We study sets of the form $A = \\big\\{ n \\in \\mathbb N \\big| \\lVert p(n) \\rVert_{\\mathbb R / \\mathbb Z} \\leq \\varepsilon(n) \\big\\}$ for various real valued polynomials $p$ and decay rates $\\varepsilon$. In particular, we ask when such sets are bases of finite order for the positive integers. We show that generically, $A$ is a basis of order $2$ when $\\operatorname{deg} p \\geq 3$, but not when $\\operatorname{deg} p = 2$, although then $A + A$ still has asymptotic density $1$.", "revisions": [ { "version": "v1", "updated": "2015-04-09T18:19:01.000Z" } ], "analyses": { "keywords": [ "positive integers", "recurrence", "real valued polynomials", "decay rates", "finite order" ], "note": { "typesetting": "TeX", "pages": 33, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150402410K" } } }