{ "id": "1504.02274", "version": "v1", "published": "2015-04-09T12:11:38.000Z", "updated": "2015-04-09T12:11:38.000Z", "title": "Existence of global solutions for a Keller-Segel-fluid equations with nonlinear diffusion", "authors": [ "Yun-Sung Chung", "Kyungkeun Kang" ], "comment": "24pages", "categories": [ "math.AP" ], "abstract": "We consider a coupled system consisting of the Navier-Stokes equations and a porous medium type of Keller-Segel system that model the motion of swimming bacteria living in fluid and consuming oxygen. We establish the global-in-time existence of weak solutions for the Cauchy problem of the system in dimension three. In addition, if the Stokes system, instead Navier-Stokes system, is considered for the fluid equation, we prove that bounded weak solutions exist globally in time.", "revisions": [ { "version": "v1", "updated": "2015-04-09T12:11:38.000Z" } ], "analyses": { "subjects": [ "35Q30", "35Q35" ], "keywords": [ "global solutions", "keller-segel-fluid equations", "nonlinear diffusion", "instead navier-stokes system", "bounded weak solutions" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable" } } }