{ "id": "1504.01642", "version": "v1", "published": "2015-04-07T15:24:57.000Z", "updated": "2015-04-07T15:24:57.000Z", "title": "Quantitative $(p,q)$ theorems in combinatorial geometry", "authors": [ "Pablo SoberĂ³n" ], "comment": "18 pages", "categories": [ "math.MG", "math.CO" ], "abstract": "We show quantitative versions of classic results in discrete geometry, where we require in the conclusion to find sets which contain either many points from a given discrete set or to have large volume. We give versions of this kind for the classic first selection lemma of B\\'ar\\'any, the existence of weak epsilon-nets for convex sets and the $(p,q)$ theorem of Alon and Kleitman.", "revisions": [ { "version": "v1", "updated": "2015-04-07T15:24:57.000Z" } ], "analyses": { "keywords": [ "combinatorial geometry", "classic first selection lemma", "discrete set", "classic results", "discrete geometry" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150401642R" } } }