{ "id": "1504.01596", "version": "v1", "published": "2015-04-07T13:22:33.000Z", "updated": "2015-04-07T13:22:33.000Z", "title": "$L^p$-boundedness of shift operators in metric spaces revisited", "authors": [ "Olli Tapiola" ], "categories": [ "math.CA" ], "abstract": "With the help of recent adjacent dyadic constructions by Hyt\\\"onen and the author, we give a simple alternative proof of results of Lechner and Passenbrunner about the $L^p$-boundedness of shift operators acting on functions $f \\in L^p(X;E)$ where $1 < p < \\infty$, $X$ is a metric space and $E$ is a UMD space.", "revisions": [ { "version": "v1", "updated": "2015-04-07T13:22:33.000Z" } ], "analyses": { "subjects": [ "30L99", "46E40" ], "keywords": [ "metric spaces", "boundedness", "adjacent dyadic constructions", "umd space", "simple alternative proof" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150401596T" } } }