{ "id": "1504.01307", "version": "v1", "published": "2015-04-06T15:40:17.000Z", "updated": "2015-04-06T15:40:17.000Z", "title": "The hyperbolic lattice point problem in conjugacy classes", "authors": [ "Dimitrios Chatzakos", "Yiannis Petridis" ], "categories": [ "math.NT" ], "abstract": "For $\\Gamma$ a cocompact or cofinite Fuchsian group, we study the hyperbolic lattice point problem in conjugacy classes, which is a modification of the classical hyperbolic lattice point problem. We use large sieve inequalities for the Riemann surfaces $\\Gamma\\backslash \\mathbb H$ to obtain average results for the error term, which are conjecturally optimal. We give a new proof of the error bound $O(X^{2/3})$, due to A. Good. For $\\hbox{SL}(2,{\\mathbb Z})$ we interpret our results in terms of indefinite quadratic forms.", "revisions": [ { "version": "v1", "updated": "2015-04-06T15:40:17.000Z" } ], "analyses": { "subjects": [ "11F72", "37C35", "37D40" ], "keywords": [ "conjugacy classes", "classical hyperbolic lattice point problem", "large sieve inequalities", "indefinite quadratic forms", "cofinite fuchsian group" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150401307C" } } }