{ "id": "1504.00997", "version": "v1", "published": "2015-04-04T09:41:17.000Z", "updated": "2015-04-04T09:41:17.000Z", "title": "Graded Betti numbers of cycle graphs and standard Young tableaux", "authors": [ "Steven Klee", "Matthew T. Stamps" ], "comment": "4 pages", "categories": [ "math.CO", "math.AC" ], "abstract": "We give a bijective proof that the Betti numbers of a minimal free resolution of the Stanley-Reisner ring of a cycle graph (viewed as a one-dimensional simplicial complex) are given by the number of standard Young tableaux of a given shape.", "revisions": [ { "version": "v1", "updated": "2015-04-04T09:41:17.000Z" } ], "analyses": { "keywords": [ "standard young tableaux", "graded betti numbers", "cycle graph", "one-dimensional simplicial complex", "minimal free resolution" ], "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150400997K" } } }