{ "id": "1504.00614", "version": "v1", "published": "2015-04-02T16:53:26.000Z", "updated": "2015-04-02T16:53:26.000Z", "title": "Scaling hypothesis for the Euclidean bipartite matching problem II. Correlation functions", "authors": [ "Sergio Caracciolo", "Gabriele Sicuro" ], "categories": [ "cond-mat.dis-nn", "math-ph", "math.MP" ], "abstract": "We analyze the random Euclidean bipartite matching problem on the hypertorus in $d$ dimensions with quadratic cost and we derive the two--point correlation function for the optimal matching, using a proper ansatz introduced by Caracciolo et al. to evaluate the average optimal matching cost. We consider both the grid--Poisson matching problem and the Poisson--Poisson matching problem. We also show that the correlation function is strictly related to the Green's function of the Laplace operator on the hypertorus.", "revisions": [ { "version": "v1", "updated": "2015-04-02T16:53:26.000Z" } ], "analyses": { "keywords": [ "scaling hypothesis", "random euclidean bipartite matching problem", "two-point correlation function", "average optimal matching cost", "hypertorus" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }