{ "id": "1504.00433", "version": "v1", "published": "2015-04-02T02:49:35.000Z", "updated": "2015-04-02T02:49:35.000Z", "title": "Existence of extremal functions for a family of Caffarelli-Kohn-Nirenberg inequalities", "authors": [ "Xuexiu Zhong", "Wenming Zou" ], "comment": "25 pages", "categories": [ "math.AP" ], "abstract": "Consider the following inequalities due to Caffarelli, Kohn and Nirenberg {\\it (Compositio Mathematica,1984):} $$\\Big(\\int_\\Omega \\frac{|u|^r}{|x|^s}dx\\Big)^{\\frac{1}{r}}\\leq C(p,q,r,\\mu,\\sigma,s)\\Big(\\int_\\Omega \\frac{|\\nabla u|^p}{|x|^\\mu}dx\\Big)^{\\frac{a}{p}}\\Big(\\int_\\Omega \\frac{|u|^q}{|x|^\\sigma}dx\\Big)^{\\frac{1-a}{q}},$$ where $\\Omega \\subset \\R^N (N\\geq 2)$ is an open set; $p, q, r, \\mu, \\sigma, s, a$ are some parameters satisfying some balanced conditions. When $\\Omega$ is a cone in $\\R^N$ (for example, $\\Omega=\\R^N)$, we prove the sharp constant $C(p,q,r,\\mu,\\sigma,s)$ can be achieved for a very large parameter space. Besides, we find some sufficient conditions which guarantee that the following Sobolev spaces $$W_{\\mu}^{1,p}(\\Omega),\\; W_{\\mu}^{1,p}(\\Omega)\\cap L^p(\\Omega), \\; H^{1,p}(\\R^N) $$ are compactly embedded into $L^r(\\R^N, \\frac{dx}{|x|^s})$ for some new ranges of parameters, where $\\displaystyle W_{\\mu}^{1,p}(\\Omega)$ is the completion of $C_0^\\infty(\\Omega)$ with respect to the norm $\\displaystyle \\Big(\\int_\\Omega \\frac{ |\\nabla u|^p}{|x|^\\mu}dx\\Big)^{\\frac{1}{p}}. $ As applications, we also study the equation $$\\displaystyle -div\\Big(\\frac{|\\nabla u|^{p-2}\\nabla u}{|x|^\\mu}\\Big)=\\lambda V(x)|u|^{q-2}u, \\;\\;\\; u\\in W_{\\mu}^{1,p}(\\Omega)$$ under some proper conditions on $V(x)$.", "revisions": [ { "version": "v1", "updated": "2015-04-02T02:49:35.000Z" } ], "analyses": { "keywords": [ "extremal functions", "caffarelli-kohn-nirenberg inequalities", "large parameter space", "compositio mathematica", "proper conditions" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150400433Z" } } }