{ "id": "1504.00312", "version": "v1", "published": "2015-04-01T17:41:04.000Z", "updated": "2015-04-01T17:41:04.000Z", "title": "Minimum-cost matching in a regular bipartite graph with random costs", "authors": [ "Alan Frieze", "Tony Johansson" ], "categories": [ "math.CO" ], "abstract": "Let $G$ be an arbitrary $d$-regular bipartite graph on $2N$ vertices. Suppose that each edge $e$ is given an independent uniform exponential rate one cost. Let $C(G)$ denote the expected length of the minimum cost perfect matching. We show that if $d=d(N)\\to\\infty$ as $N\\to\\infty$, then $E(C(G)) =(1+o(1))\\frac{N}{d} \\frac{\\pi^2}{6}$. This generalises the well-known result for the case $G=K_{N,N}$.", "revisions": [ { "version": "v1", "updated": "2015-04-01T17:41:04.000Z" } ], "analyses": { "keywords": [ "regular bipartite graph", "random costs", "minimum-cost matching", "independent uniform exponential rate", "well-known result" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150400312F" } } }