{ "id": "1504.00148", "version": "v1", "published": "2015-04-01T08:49:57.000Z", "updated": "2015-04-01T08:49:57.000Z", "title": "Reductions of Galois representations for slopes in $(1,2)$", "authors": [ "Shalini Bhattacharya", "Eknath Ghate" ], "comment": "41 pages", "categories": [ "math.NT" ], "abstract": "We describe the semi-simplification of the mod $p$ reduction of certain crystalline two dimensional local Galois representations of slopes in the interval $(1,2)$ and all weights. The proof uses the mod $p$ Local Langlands Correspondence for $GL_2(Q_p)$. We also give a complete description of the submodules generated by the second highest monomial in the mod $p$ symmetric power representations of $GL_2(F_p)$.", "revisions": [ { "version": "v1", "updated": "2015-04-01T08:49:57.000Z" } ], "analyses": { "subjects": [ "11F80" ], "keywords": [ "dimensional local galois representations", "local langlands correspondence", "second highest monomial", "symmetric power representations", "complete description" ], "note": { "typesetting": "TeX", "pages": 41, "language": "en", "license": "arXiv", "status": "editable" } } }