{ "id": "1504.00048", "version": "v1", "published": "2015-03-31T21:33:26.000Z", "updated": "2015-03-31T21:33:26.000Z", "title": "Ergodic properties of equilibrium measures for smooth three dimensional flows", "authors": [ "François Ledrappier", "Yuri Lima", "Omri Sarig" ], "comment": "29 pages, 1 figure", "categories": [ "math.DS", "math.DG" ], "abstract": "Let $\\{T^t\\}$ be a smooth flow with positive speed and positive topological entropy on a compact smooth three dimensional manifold, and let $\\mu$ be an ergodic measure of maximal entropy. We show that either $\\{T^t\\}$ is Bernoulli, or $\\{T^t\\}$ is isomorphic to the product of a Bernoulli flow and a rotational flow. Applications are given to Reeb flows.", "revisions": [ { "version": "v1", "updated": "2015-03-31T21:33:26.000Z" } ], "analyses": { "subjects": [ "37B10", "37C10", "37C35" ], "keywords": [ "equilibrium measures", "dimensional flows", "ergodic properties", "rotational flow", "bernoulli flow" ], "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable" } } }