{ "id": "1503.09190", "version": "v1", "published": "2015-03-31T19:59:12.000Z", "updated": "2015-03-31T19:59:12.000Z", "title": "Small ball probabilities, maximum density and rearrangements", "authors": [ "T. Juškevičius", "J. D. Lee" ], "comment": "4 pages", "categories": [ "math.PR" ], "abstract": "We prove that the probability that a sum of independent random variables in $\\mathbb{R}^d$ with bounded densities lies in a ball is maximized by taking uniform distributions on spheres. This in turn generalizes a result by Rogozin on the maximum density of such sums on the line.", "revisions": [ { "version": "v1", "updated": "2015-03-31T19:59:12.000Z" } ], "analyses": { "subjects": [ "60G50", "60F10", "60E05" ], "keywords": [ "small ball probabilities", "maximum density", "probability", "rearrangements", "independent random variables" ], "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150309190J" } } }