{ "id": "1503.08916", "version": "v1", "published": "2015-03-31T05:09:56.000Z", "updated": "2015-03-31T05:09:56.000Z", "title": "Newton-Okounkov bodies for Bott-Samelson varieties and string polytopes for generalized Demazure modules", "authors": [ "Naoki Fujita" ], "comment": "24 pages", "categories": [ "math.RT", "math.AG" ], "abstract": "Let $Z_{\\bf i}$ (resp., $X(w)$) be the Bott-Samelson variety (resp., the Schubert variety), and $\\mathcal{L}_{\\bf m}$ (resp., $\\mathcal{L}_\\lambda$) a line bundle on $Z_{\\bf i}$ (resp., on $X(w)$). We can think of $H^0(Z_{\\bf i}, \\mathcal{L}_{\\bf m})$ as a generalization of $H^0(X(w), \\mathcal{L}_\\lambda)$. We extend the string polytope for the Demazure module $H^0(X(w), \\mathcal{L}_\\lambda)^\\ast$ to $H^0(Z_{\\bf i}, \\mathcal{L}_{\\bf m})^\\ast$, and prove that it is identical to the Newton-Okounkov body of $Z_{\\bf i}$ with respect to a specific valuation. As applications of this result, we show that these are indeed polytopes, and also construct a basis of $H^0(Z_{\\bf i}, \\mathcal{L}_{\\bf m})$, which can be thought of as a perfect basis.", "revisions": [ { "version": "v1", "updated": "2015-03-31T05:09:56.000Z" } ], "analyses": { "subjects": [ "05E10", "14M15", "14M25", "17B37" ], "keywords": [ "generalized demazure modules", "bott-samelson variety", "newton-okounkov body", "string polytope", "schubert variety" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150308916F" } } }