{ "id": "1503.08638", "version": "v1", "published": "2015-03-30T11:10:39.000Z", "updated": "2015-03-30T11:10:39.000Z", "title": "Solvability of the Initial-Boundary value problem of the Navier-Stokes equations with rough data", "authors": [ "Tongkeun Chang", "Bum Ja Jin" ], "categories": [ "math.AP" ], "abstract": "In this paper, we study the initial and boundary value problem of the Navier-Stokes equations in the half space. We prove the unique existence of weak solution $u\\in L^q(\\R_+\\times (0,T))$ with $\\nabla u\\in L^{\\frac{q}{2}}_{loc}(\\R_+\\times (0,T))$ for a short time interval when the initial data $h\\in {B}_q^{-\\frac{2}{q}}(\\R_+)$ and the boundary data $ g\\in L^q(0,T;B^{-\\frac{1}{q}}_q(\\Rn))+L^q(\\Rn;B^{-\\frac{1}{2q}}_q(0,T)) $ with normal component $g_n\\in L^q(0,T;\\dot{B}^{-\\frac{1}{q}}_q(\\Rn))$, $n+2