{ "id": "1503.08493", "version": "v1", "published": "2015-03-29T20:47:05.000Z", "updated": "2015-03-29T20:47:05.000Z", "title": "Upper bounds for the first eigenvalue of the Laplacian on non-orientable surfaces", "authors": [ "Mikhail A. Karpukhin" ], "comment": "7 pages", "categories": [ "math.DG", "math.SP" ], "abstract": "In 1980 Yang and Yau~\\cite{YY} proved the celebrated upper bound for the first eigenvalue on an orientable surface of genus $\\gamma$. Later Li and Yau~\\cite{LY} gave a simple proof of this bound by introducing the concept of conformal volume of a Riemannian manifold. In the same paper they proposed an approach for obtaining a similar estimate for non-orientable surfaces. In the present paper we formalize their argument and improve the bounds stated in~\\cite{LY}.", "revisions": [ { "version": "v1", "updated": "2015-03-29T20:47:05.000Z" } ], "analyses": { "subjects": [ "58E11", "58J50", "35P15" ], "keywords": [ "first eigenvalue", "non-orientable surfaces", "celebrated upper bound", "simple proof", "conformal volume" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable" } } }