{ "id": "1503.08083", "version": "v1", "published": "2015-03-27T14:06:31.000Z", "updated": "2015-03-27T14:06:31.000Z", "title": "On the asymptotic Plateau problem for CMC hypersurfaces in hyperbolic space", "authors": [ "Jaime Ripoll", "Miriam Telichevesky" ], "comment": "arXiv admin note: substantial text overlap with arXiv:1309.3644", "categories": [ "math.DG" ], "abstract": "Let $\\mathbb{R}_{+}^{n+1}$ \\ be the half-space model of the hyperbolic space $\\mathbb{H}^{n+1}.$ It is proved that if $\\Gamma\\subset\\left\\{ x_{n+1}=0\\right\\} \\subset\\partial_{\\infty}\\mathbb{H}^{n+1}$ is a bounded $C^{0}$ Euclidean graph over $\\left\\{ x_{1}=0,\\text{ }x_{n+1}=0\\right\\} $ then, given $\\left\\vert H\\right\\vert <1,$ there is a complete, properly embedded, CMC $H$ hypersurface $\\Sigma$ of $\\mathbb{H}^{n+1}$ such that $\\partial_{\\infty }S=\\Gamma\\cup\\left\\{ x_{n+1}=+\\infty\\right\\} .$ This result can be seen as a limit case of the existence theorem proved by B. Guan and J. Spruck in \\cite{GS} on CMC $\\left\\vert H\\right\\vert <1$ radial graphs with prescribed $C^{0}$ asymptotic boundary data.", "revisions": [ { "version": "v1", "updated": "2015-03-27T14:06:31.000Z" } ], "analyses": { "keywords": [ "asymptotic plateau problem", "hyperbolic space", "cmc hypersurfaces", "asymptotic boundary data", "euclidean graph" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }