{ "id": "1503.08000", "version": "v1", "published": "2015-03-27T09:25:39.000Z", "updated": "2015-03-27T09:25:39.000Z", "title": "Invariant measures for train track towers", "authors": [ "Nicolas Bédaride", "Arnaud Hilion", "Martin Lustig" ], "comment": "32 pages", "categories": [ "math.DS", "math.GR" ], "abstract": "In this paper we present a combinatorial machinery, consisting of a graph tower $\\overleftarrow\\Gamma$ and a weight towers $\\overleftarrow\\omega$ on $\\overleftarrow\\Gamma$, which allow us to efficiently describe invariant measures $\\mu = \\mu^{\\overleftarrow\\omega}$ on rather general discrete dynamicals system over a finite alphabet. A train track map $f: \\Gamma \\to \\Gamma$ defines canonically a stationary such graph tower $\\overleftarrow{\\Gamma_f}$. In the most important two special cases the measure $\\mu$ specializes to a (typically ergodic) invariant measure on a substitution subshift, or to a projectively $f_*$-invariant current on the free group $\\pi_1 \\Gamma$. Our main result establishes a 1-1 correspondence between such measures $\\mu$ and the non-negative eigenvectors of the incidence (\"transition\") matrix of $f$.", "revisions": [ { "version": "v1", "updated": "2015-03-27T09:25:39.000Z" } ], "analyses": { "subjects": [ "37B10", "20E05", "37B05", "20E08", "20F65" ], "keywords": [ "invariant measure", "train track towers", "general discrete dynamicals system", "graph tower", "main result establishes" ], "note": { "typesetting": "TeX", "pages": 32, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150308000B" } } }