{ "id": "1503.07894", "version": "v1", "published": "2015-03-13T14:00:34.000Z", "updated": "2015-03-13T14:00:34.000Z", "title": "Classification of subspaces in ${\\mathbb{F}}^2\\otimes {\\mathbb{F}}^3$ and orbits in ${\\mathbb{F}}^2\\otimes {\\mathbb{F}}^3\\otimes {\\mathbb{F}}^r$", "authors": [ "Michel Lavrauw", "John Sheekey" ], "categories": [ "math.CO", "math.AG" ], "abstract": "This paper contains the classification of the orbits of elements of the tensor product spaces ${\\mathbb{F}}^2\\otimes {\\mathbb{F}}^3 \\otimes{\\mathbb{F}}^r$, $r\\geq 1$, under the action of two natural groups, for all finite; real; and algebraically closed fields. For each of the orbits we determine: a canonical form; the tensor rank; the rank distribution of the contraction spaces; and a geometric description. The proof is based on the study of the contraction spaces in ${\\mathrm{PG}}({\\mathbb{F}}^2\\otimes{\\mathbb{F}}^3)$ and is geometric in nature. Although the main focus is on finite fields, the techniques are mostly field independent.", "revisions": [ { "version": "v1", "updated": "2015-03-13T14:00:34.000Z" } ], "analyses": { "keywords": [ "classification", "contraction spaces", "tensor product spaces", "paper contains", "natural groups" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150307894L" } } }