{ "id": "1503.07577", "version": "v1", "published": "2015-03-25T23:20:00.000Z", "updated": "2015-03-25T23:20:00.000Z", "title": "Definability and almost disjoint families", "authors": [ "Asger Tornquist" ], "categories": [ "math.LO" ], "abstract": "We show that there are no infinite maximal almost disjoint (\"mad\") families in Solovay's model, thus solving a long-standing problem posed by A.D.R. Mathias in 1967. We also give a new proof of Mathias' theorem that no analytic infinite almost disjoint family can be maximal, and show more generally that if Martin's Axiom holds at $\\kappa<2^{\\aleph_0}$, then no $\\kappa$-Souslin infinite almost disjoint family can be maximal. Finally we show that if $\\aleph_1^{L[a]}<\\aleph_1$, then there are no $\\Sigma^1_2[a]$ infinite mad families.", "revisions": [ { "version": "v1", "updated": "2015-03-25T23:20:00.000Z" } ], "analyses": { "subjects": [ "03E05", "03E15", "03E35", "03E45", "03E50" ], "keywords": [ "disjoint family", "definability", "infinite mad families", "martins axiom holds", "souslin infinite" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }