{ "id": "1503.07456", "version": "v1", "published": "2015-03-25T16:56:26.000Z", "updated": "2015-03-25T16:56:26.000Z", "title": "Topological classification of k.p Hamiltonians for Chern insulators", "authors": [ "Frank Kirtschig", "Jeroen van den Brink", "Carmine Ortix" ], "comment": "5 pages, 4 figures", "categories": [ "cond-mat.mes-hall" ], "abstract": "We proof the existence of two different topological classes of low-energy k.p Hamiltonians for Chern insulators. Using the paradigmatic example of single-valley two-band models, we show that k.p Hamiltonians that we dub local have a topological invariant corresponding precisely to the Hall conductivity and linearly dispersing chiral midgap edge states at the expansion point. Non-local k.p Hamiltonians have a topological invariant that is twice the Hall conductivity of the system. This class is characterized by a non-local bulk-edge correspondence with midgap edge states appearing away from the high-symmetry k.p expansion point.", "revisions": [ { "version": "v1", "updated": "2015-03-25T16:56:26.000Z" } ], "analyses": { "keywords": [ "chern insulators", "hamiltonians", "topological classification", "hall conductivity", "midgap edge states appearing away" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable" } } }