{ "id": "1503.07281", "version": "v1", "published": "2015-03-25T05:11:12.000Z", "updated": "2015-03-25T05:11:12.000Z", "title": "Note on vanshing power sums of roots of unity", "authors": [ "Neeraj Kumar", "K. Senthil Kumar" ], "comment": "4 pages, 1 table, comments are welcome", "categories": [ "math.NT" ], "abstract": "For a given positive integers $m$ and $\\ell$, we give a complete list of integers $n$ for which their exist $m$th roots of unity $x_1,\\dots,x_n \\in \\mathbb{C}$ such that $x_1^{\\ell} + \\cdots + x_n^{\\ell}=0$. This extends the earlier result of Lam and Leung on vanishing sums of roots of unity. Furthermore, we prove that for which integers $n$ with $2 \\leq n \\leq m$, there are distinct $m$th roots of unity $x_1,\\dots,x_n \\in \\mathbb{C}$ such that $x_1^{\\ell} + \\cdots + x_n^{\\ell}=0$.", "revisions": [ { "version": "v1", "updated": "2015-03-25T05:11:12.000Z" } ], "analyses": { "subjects": [ "11L03", "11R18" ], "keywords": [ "vanshing power sums", "th roots", "complete list", "earlier result", "positive integers" ], "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150307281K" } } }