{ "id": "1503.07280", "version": "v1", "published": "2015-03-25T05:08:02.000Z", "updated": "2015-03-25T05:08:02.000Z", "title": "Schrodinger-Kirchhoff-Poisson type systems", "authors": [ "Cyril J. Batkam", "Joao R. Santos Junior" ], "categories": [ "math.AP" ], "abstract": "In this article we study the existence of solutions to the system \\begin{equation*}\\left\\{ \\begin{array}{ll} -\\left(a+b\\int_{\\Omega}|\\nabla u|^{2}\\right)\\Delta u +\\phi u= f(x, u) &\\text{in }\\Omega \\hbox{} -\\Delta \\phi= u^{2} &\\text{in }\\Omega \\hbox{} u=\\phi=0&\\text{on }\\partial\\Omega, \\hbox{} \\end{array} \\right. \\end{equation*} where $\\Omega$ is a bounded smooth domain of $\\mathbb{R}^N$ ($N=1,2$ or $3$), $a>0$, $b\\geq0$, and $f:\\overline{\\Omega}\\times \\mathbb{R}\\to\\mathbb{R}$ is a continuous function which is $3$-superlinear. By using some variants of the mountain pass theorem established in this paper, we show the existence of three solutions: one positive, one negative, and one which changes its sign. Furthermore, in case $f$ is odd with respect to $u$ we obtain an unbounded sequence of sign-changing solutions.", "revisions": [ { "version": "v1", "updated": "2015-03-25T05:08:02.000Z" } ], "analyses": { "subjects": [ "35J20", "35J47", "35B33", "35J25", "35J50", "35J65" ], "keywords": [ "schrodinger-kirchhoff-poisson type systems", "mountain pass theorem", "bounded smooth domain", "continuous function", "superlinear" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }