{ "id": "1503.07063", "version": "v1", "published": "2015-03-24T14:52:26.000Z", "updated": "2015-03-24T14:52:26.000Z", "title": "Optimal Transport with Coulomb cost. Approximation and duality", "authors": [ "Luigi De Pascale" ], "categories": [ "math.AP", "math.OC" ], "abstract": "We revisit the duality theorem for multimarginal optimal transportation problems. In particular, we focus on the Coulomb cost. We use a discrete approximation to prove equality of the extremal values and some careful estimates of the approximating sequence to prove existence of maximizers for the dual problem (Kantorovich's potentials). Finally we observe that the same strategy can be applied to a more general class of costs and that a classical results on the topic cannot be applied here.", "revisions": [ { "version": "v1", "updated": "2015-03-24T14:52:26.000Z" } ], "analyses": { "subjects": [ "49J45", "49N15", "49K30" ], "keywords": [ "coulomb cost", "multimarginal optimal transportation problems", "general class", "discrete approximation", "extremal values" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150307063D" } } }