{ "id": "1503.06867", "version": "v1", "published": "2015-03-23T22:32:57.000Z", "updated": "2015-03-23T22:32:57.000Z", "title": "Hitting times and periodicity in random dynamics", "authors": [ "Jérôme Rousseau", "Mike Todd" ], "categories": [ "math.DS" ], "abstract": "We prove quenched laws of hitting time statistics for random subshifts of finite type. In particular we prove a dichotomy between the law for periodic and for non-periodic points. We show that this applies to random Gibbs measures.", "revisions": [ { "version": "v1", "updated": "2015-03-23T22:32:57.000Z" } ], "analyses": { "keywords": [ "random dynamics", "periodicity", "random gibbs measures", "finite type", "random subshifts" ], "publication": { "doi": "10.1007/s10955-015-1325-7", "journal": "Journal of Statistical Physics", "year": 2015, "month": "Oct", "volume": 161, "number": 1, "pages": 131 }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015JSP...161..131R" } } }