{ "id": "1503.06298", "version": "v1", "published": "2015-03-21T13:11:35.000Z", "updated": "2015-03-21T13:11:35.000Z", "title": "Group actions on spheres with rank one prime power isotropy", "authors": [ "Ian Hambleton", "Ergun Yalcin" ], "comment": "16 pages", "categories": [ "math.GT", "math.AT" ], "abstract": "We show that a rank two finite group G admits a finite G-CW-complex X homotopy equivalent to a sphere, with rank one prime power isotropy, if and only if G does not p'-involve Qd(p) for any odd prime p. This follows from a more general theorem which allows us to construct a finite G-CW-complex by gluing together a given G-invariant family of representations defined on the Sylow subgroups of G.", "revisions": [ { "version": "v1", "updated": "2015-03-21T13:11:35.000Z" } ], "analyses": { "subjects": [ "57S17", "55U15", "18Gxx" ], "keywords": [ "prime power isotropy", "group actions", "finite g-cw-complex", "homotopy equivalent", "finite group" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable" } } }