{ "id": "1503.05739", "version": "v1", "published": "2015-03-19T12:32:53.000Z", "updated": "2015-03-19T12:32:53.000Z", "title": "Ehrhart polynomial roots of reflexive polytopes", "authors": [ "Gábor Hegedüs", "Akihiro Higashitani", "Alexander Kasprzyk" ], "comment": "20 pages, 1 figure", "categories": [ "math.CO", "math.AG" ], "abstract": "Recent work has focused on the roots z of the Ehrhart polynomial of a lattice polytope P. The case when Re(z) = -1/2 is of particular interest: these polytopes satisfy Golyshev's \"canonical line hypothesis\". We characterise such polytopes when dim(P) <= 7. We also consider the \"half-strip condition\", where all roots z satisfy -dim(P)/2 <= Re(z) <= dim(P)/2-1, and show that this holds for any reflexive polytope with dim(P) <= 5. We give an example of a 10-dimensional reflexive polytope which violates the half-strip condition, thus improving on an example by Ohsugi--Shibata in dimension 34.", "revisions": [ { "version": "v1", "updated": "2015-03-19T12:32:53.000Z" } ], "analyses": { "subjects": [ "52B20", "05A15", "14M25" ], "keywords": [ "ehrhart polynomial roots", "reflexive polytope", "half-strip condition", "polytopes satisfy golyshevs", "canonical line hypothesis" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }