{ "id": "1503.05612", "version": "v1", "published": "2015-03-18T23:16:21.000Z", "updated": "2015-03-18T23:16:21.000Z", "title": "Almost-spanning universality in random graphs", "authors": [ "David Conlon", "Asaf Ferber", "Rajko Nenadov", "Nemanja Škorić" ], "categories": [ "math.CO" ], "abstract": "A graph $G$ is said to be $\\mathcal H(n,\\Delta)$-universal if it contains every graph on $n$ vertices with maximum degree at most $\\Delta$. It is known that for any $\\varepsilon > 0$ and any natural number $\\Delta$ there exists $c > 0$ such that the random graph $G(n,p)$ is asymptotically almost surely $\\mathcal H((1-\\varepsilon)n,\\Delta)$-universal for $p \\geq c (\\log n/n)^{1/\\Delta}$. Bypassing this natural boundary, we show that for $\\Delta \\geq 3$ the same conclusion holds when $p = \\omega\\left(n^{-\\frac{1}{\\Delta-1}}\\log^5 n\\right)$.", "revisions": [ { "version": "v1", "updated": "2015-03-18T23:16:21.000Z" } ], "analyses": { "keywords": [ "random graph", "almost-spanning universality", "maximum degree", "natural number" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150305612C" } } }