{ "id": "1503.05101", "version": "v1", "published": "2015-03-17T15:49:12.000Z", "updated": "2015-03-17T15:49:12.000Z", "title": "A problem of Berry and knotted zeros in the eigenfunctions of the harmonic oscillator", "authors": [ "Alberto Enciso", "David Hartley", "Daniel Peralta-Salas" ], "comment": "12 pages", "categories": [ "math-ph", "math.MP", "math.SP" ], "abstract": "We prove that, given any finite link L in R^3, there is a high energy complex-valued eigenfunction of the harmonic oscillator such that its nodal set contains a union of connected components diffeomorphic to L. This solves a problem of Berry on the existence of knotted zeros in bound states of a quantum system.", "revisions": [ { "version": "v1", "updated": "2015-03-17T15:49:12.000Z" } ], "analyses": { "keywords": [ "harmonic oscillator", "knotted zeros", "high energy complex-valued eigenfunction", "nodal set contains", "quantum system" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }