{ "id": "1503.04856", "version": "v1", "published": "2015-03-16T21:19:20.000Z", "updated": "2015-03-16T21:19:20.000Z", "title": "Fourier Series for Singular Measures", "authors": [ "John E. Herr", "Eric S. Weber" ], "comment": "12 pages", "categories": [ "math.FA" ], "abstract": "Using the Kaczmarz algorithm, we prove that for any singular Borel probability measure $\\mu$ on $[0,1)$, every $f\\in L^2(\\mu)$ possesses a Fourier series of the form $f(x)=\\sum_{n=0}^{\\infty}c_ne^{2\\pi inx}$. We show that the coefficients $c_{n}$ can be computed in terms of the quantities $\\widehat{f}(n) = \\int_{0}^{1} f(x) e^{-2\\pi i n x} d \\mu(x)$. We also demonstrate a Shannon-type sampling theorem for functions that are in a sense $\\mu$-bandlimited.", "revisions": [ { "version": "v1", "updated": "2015-03-16T21:19:20.000Z" } ], "analyses": { "keywords": [ "fourier series", "singular measures", "singular borel probability measure", "kaczmarz algorithm", "shannon-type sampling theorem" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150304856H" } } }