{ "id": "1503.04239", "version": "v1", "published": "2015-03-13T22:41:55.000Z", "updated": "2015-03-13T22:41:55.000Z", "title": "On the Ornstein-Zernike behaviour for the supercritical Random-Cluster model on $\\mathbb{Z}^{d},d\\geq3.$", "authors": [ "M. Campanino", "M. Gianfelice" ], "comment": "The final publication is available at Springer via http://dx.doi.org/10.1007/s10955-015-1222-0. arXiv admin note: text overlap with arXiv:1104.1595", "doi": "10.1007/s10955-015-1222-0", "categories": [ "math.PR", "math-ph", "math.MP" ], "abstract": "We prove Ornstein-Zernike behaviour in every direction for finite connection functions of the random cluster model on $\\mathbb{Z}^{d},d\\geq3,$ for $q\\geq1,$ when occupation probabilities of the bonds are close to $1.$ Moreover, we prove that equi-decay surfaces are locally analytic, strictly convex, with positive Gaussian curvature.", "revisions": [ { "version": "v1", "updated": "2015-03-13T22:41:55.000Z" } ], "analyses": { "subjects": [ "60K35", "82B43", "60K15", "60F17" ], "keywords": [ "supercritical random-cluster model", "ornstein-zernike behaviour", "random cluster model", "finite connection functions", "occupation probabilities" ], "tags": [ "journal article" ], "publication": { "journal": "Journal of Statistical Physics", "year": 2015, "month": "Mar", "pages": 60 }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015JSP...tmp...60C" } } }