{ "id": "1503.04156", "version": "v1", "published": "2015-03-13T17:28:01.000Z", "updated": "2015-03-13T17:28:01.000Z", "title": "Local Limit Theorem in negative curvature", "authors": [ "François Ledrappier", "Seonhee Lim" ], "comment": "52 pages, 5 figures", "categories": [ "math.DS" ], "abstract": "Consider the heat kernel $p(t,x,y)$ on the universal cover $X$ of a Riemannian manifold $M$ of negative curvature. We show the local limit theorem for $p$ : $$\\lim_{t \\to \\infty} t^{3/2}e^{\\lambda_0 t} p(t,x,y)=C(x,y),$$ where $\\lambda_0$ is the bottom of the spectrum of the geometric Laplacian and $C(x,y)$ is a positive function which depends on $x, y \\in X$. We also show that the $\\lambda_0$-Martin boundary of $X$ is equal to its topological boundary. We use the uniform Harnack inequality on the boundary $\\partial X$ and the uniform three-mixing of the geodesic flow on the unit tangent bundle $SM$ for suitable Gibbs-Margulis measures.", "revisions": [ { "version": "v1", "updated": "2015-03-13T17:28:01.000Z" } ], "analyses": { "subjects": [ "37D40", "37A17", "37A25", "37A30", "37A50" ], "keywords": [ "local limit theorem", "negative curvature", "uniform harnack inequality", "unit tangent bundle", "martin boundary" ], "note": { "typesetting": "TeX", "pages": 52, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150304156L" } } }